
sZ

RESEARCH ARTICLE

A UNIVERSAL PROGRAMMING PLATFORM BY EXTENDING XML

*1Ghassan El Nemr and 2Yara AlAli

1Head of CCE Department, Faculty of Engineering, Lebanese Canadian University, Aintoura, Lebanon
2Technical Director, Key In Hands Corp. Damascus, Syria

ARTICLE INFO ABSTRACT

XML is everywhere: Data Integration, File configuration and Interface definition are areas where
XML is intensively present. We may define rules, constraints and configuration settings, or specify
graphical interfaces, export data and define rules. This markup language allows the extensibility of
any data specification, graphical interface design, or settings storage in an easy and flexible way,
which allowed a wide usage of XML in the industry community. Programmers write programs using
a learned syntax that depends of a specific language. Languages may share the same paradigm but are
different in their syntax and reserved words. Productivity depends of the chosen language, and the
developer knowledge of it. Programmers switching from a language to another may build on the
paradigm knowledge, however they must learn a new syntax since no flexible universal programming
syntax is offered. The purpose of this paper is to offer to the development community a uniform
programming platform based on XML, and running on top of different baseline languages and
frameworks. By joining a simple language specification to a powerful framework, we reduce the set
of required reserved words and syntax mechanisms to learn in a language. We propose a
programming platform that increases the productivity while reducing the learning time and error rate.
This results in an increase in maintenance quality and rapid development, and code readability.

INTRODUCTION

Learning new programming languages is highly expansive:
Billions of dollars are spent every year in learning new
programming languages syntax, extend software written in
specific languages, and maintaining legacy code software. The
quality of a software is determined by the number of defects in
one hand [1], and the maintenance efforts that are invested to
maintain the software in production. Hence Software reliability
is mandatory and related closely to the used programming
platform, it remains very costly given many facts: One is
technical resources turnover, which introduces a hidden cost in
the overall maintenance global effort, another one is the
complexity of adding or modifying a module in a running
environment. For mostly all applications, the increase of
reliability goes through an incremental increase in the overall
programmer effort, who is supposed to maintain a high level of
knowledge in a specific programming language with a specific
programming paradigm, and coding with it [2]. The
productivity of developers is affected in principle by the
complexity of the tasks they have to implement and the
complexity of the used programming language. Modules that
developers are expected to develop include the design and
development of a Graphical User Interface, Core components,
Data persistency scripts, and business tasks. The recommended
principles of language design include: readability, reliability,
simpler syntax, portability, no name hiding, eliminate machine
dependencies, graceful degradation, and support for reuse. A
programming language [3] is defined as “A set of commands,

*Corresponding author: Ghassan El Nemr,
Head of CCE Department, Faculty of Engineering, Lebanese Canadian
University, Aintoura, Lebanon

instructions, and other syntax use to create a software
program”. Harper in [4] stipulates that “Programming
languages express computations in a form comprehensible to
both people and machines”. The syntax of a language specifies
how various sorts of phrases (expressions, commands,
declarations, and so forth) may be combined to form programs.
These considerations will guide the scope of this work. We
will introduce a reliable programming language, based on
XML, capable of defining user interfaces, link the user events
to the core modules, simple to understand and learn, reliable
and extensible.

Genxml and Genplatform

We have chosen the name of GenXml (Generic XML) to
express the nature of our presented language: generic
programming language based on XML. The generic aspect of
the language consists in defining a common normalized way of
handling user interface design and link the core modules to it,
so a developer sees all the code as a sequence of instruction
lines that are interpreted in a uniform manner. We have chosen
to reduce the number of keywords in GenXML since reserved
words are a key factor in measuring a language complexity [5].
C++ has more than 90 keywords, while Java has only 50. The
developers’ preference goes naturally to Java for all non-
embedded type application since they have less symbols to
learn, and less structures to manipulate. The procedural
structure of a programming language [6] is determined by its
control flow of instructions. Languages as Scala [6a] adopt a
sequential procedural paradigm, while Java is based on object
oriented paradigm. Many blocks with different structure define
a program or a module, program will possess a single entry and

Article History:

Received 07th January, 2019
Received in revised form
09th February, 2019
Accepted 11th March, 2019
Published online 30th April, 2019

www.ijramr.com

International Journal of Recent Advances in Multidisciplinary Research

Vol. 06, Issue 04, pp.4847-4851, April, 2019

Keywords:

Programming Platform,
Development Cost, XML Programming,
Framework Extension, XML Coding,
Maintenance.

single exit in the control flow, while modules define a set of
exported functions and structures. The goal here is to offer to
the developer the tools to implement and manipulate different
kind of entities, objects, and execute sequence of instructions.
Our purpose is to simplify this tasks by offering to the
programmer a simple linear programming syntax allowing to
write code fast. The approach is different from other languages
who start from scratch and are implemented using a rule based
grammar [6b], identify tokens and process both syntax and
semantic analysis prior to generate an abstract tree and a code
machine [6c]. It is not to write a full programming language,
having its own syntax and compiler such as o-xml where all of
polymorphism, function overloading, exception handling,
threads are offered [7], but to offer a mean for developers to
standardize and simplify the code structure while taking
benefit of a well-known framework. Hence we choose to
define a language specification based on stable frameworks
such as Microsoft.Net, implement the specification and realize
programs that demonstrate the proof of concept in one hand
and allow write a complete application in another hand. This
platform will be called GenPlatform since it used the GenXML
language to define and interpret XML scripts for both user
interface definition and code handling. This generic syntax
must offer all the user interface design by using visual trees
expressed in XML, and offering all the components of a
program such declarations, operators, arrays, branching and
loops, scope of variable and input/output primitives as well as
function/procedure calls and system calls. The combination of
visual trees xml based scripts with XML code scripts will
define a program written under GenPlatform.

A generic XML based instruction form is

<tag attrib1=value1 attrib2=value2 ... attribn=valuen > …
</tag>

The tag will be the same for all code script definitions, and
expresses the graphical component in the case of the visual tree
support. The attributes names and values provide the support
for all the program components. Hence the program becomes a
set of xml streams where each one is a combination of xml
sequence of tagged text specifications, read by an interpreter in
run time. Similarly to programming languages C++, C#, java
and php[7a], we have chosen to enrich GenPlatform with a
graphical library offering all the richness of desktop
environment. We have based our first specification on
XAML[7b] for the graphical part.

Flow of Execution

Code in GenPlatform can be classified in two types:

 Xml files containing graphical specification of user
interface

 Xml files containing code instructions.

Many patforms use an xml approach to design and implement
the interface. Using Android's XML vocabulary, one can
quickly design UI layouts and the screens, and attach code
handlers functions to components.

Microsoft. Net does the same with its aspx pages where a
graphical namespace is loaded and defines a set of tags, which
will be used to express a graphical tree of components. This
approach is known to offer a RAD (rapid application design)

method to construct interfaces and prototypes quickly through
tools and wizards such as android studio or Microsoft Visual
Studio. Our approach to define the interface takes benefit from
the existing .NET wizard that allows create XAML files from
user actions. Hence the assistant uses WYSIWYG approach to
visualize user interface design in real time, and modify them
consequently. A 3 step process is performed to allow the
execution of a GenPlatform application: First the code is
scanned from a repository of xml files and parsed to check the
well forming of the xml syntax according to the supported file
type. If the file is a visual tree implementation then it is loaded
in the controller, else it goes through the reflector to be
translated to a binary form of library entries calls. The third
step is the coordination of code calls and graphical user
interfaces so a context will be created to start the execution.
In this first implementation we have opted to use .NET
framework since it offers the reflection namespace necessary
to link our instructions to system calls and offers the necessary
memory management tools and structures such as hash maps,
lists, and array support [7c].

Figure 1. Program Execution in GenPlatform

As shown in Figure1, the code may be hosted in a relational
database rather than in files. This kind of data support manages
the code as data content and allows an easier maintenance and
indexing as well as a continuous run of the application without
the need to restart the client applications in case of script
changes. Scripts are stored in tables, depending on their type.
A script is assigned a name and an XML text, as well as an
event handler and a graphical component name to which it is
attached. The XML text is first loaded from the database when
an event occurs (button click, load, grid selection and others)
then parsed and verified. The next step is to map the tag to a
method call over object created in the .NET environment [8].

The code may be loaded from the database when a specific
event occurs. Such events are: time triggers, user interaction
events such as click or select line in a grid, and application
event. The Parser verifies the well formatting of the xml
program and calls the reflector which has the responsibility of
dynamically load the libraries and provides the xml-equivalent
binary handlers to the controller.

The controller has two principal roles:

 Loader: the tags determine the type to instantiate so the
corresponding libraries are loaded. So the controller
instructs the reflector to pull the code from the database
according to the flow of execution

 Runner: the declared objects are added to the
application context. In a later time, the application
would use the newly declared objects referring to their
name preceded with the char %, so a dynamic context is
maintained to insure the well execution.

The controller acts as a code flow regulator where all logging
of execution is performed for ulterior trace analysis.

International Journal of Recent Advances in Multidisciplinary Research 4848

Generic Instruction Syntax

The context maintained by the controller is populated by
objects created while the application runs. A common line
syntax specifying the generic function form may be defined as:

<Line Id="1" Operation="FunctionCall">
<Function id="id" fname="operation" attrib1="val1"
attrib2="%val2" attrib3="%val2.prop" out="%ob" />
</Line>

As the application runs, the context is enriched with new
named objects that will be called in the subsequent ran scripts
using the XML syntax. When an operation function is called,
passing the parameters val1, the content of the object named
val2 is obtained through the operator %, and the value of the
property prop of the object named val3. The result will be
stored in the context under the name ob passed to the function
call using the attribute out. The context will be enriched by a
new object named ob after the execution of the function. This
object may be used later in all functions referencing it as an
attribute value preceeded by % sign. The result of such
notation is the restraint number of reserved words, and the
syntax simplification, which contributes to decrease the
learning curve of our language. The total number of symbols is
then reduced and normalized to a simple form, so developers
get to learn one common syntax and one mechanism that
applies to all of declarations, arrays, loops, conditionals and
method calls. As an example, a declaration of a variable dbc of
type database connection is done through the line:

<Line Id="1" Operation="FunctionCall">
<Function id="1.2" fname="Declare" out="dbc"
type="GenDataLayer.DbAccess" />
</Line>

Figure 2. Genplatform Instruction: Declare A Variable

A line may be a set of Functions tags with an id. The attribute
fname is equal to Declare, which means a declaration of
variable, and the type of the new variable named dbac is
DbAccess from the library GenDataLayer.

The same logic applies when the operation is a method call.
The following line:

<Line Id="1" Operation="FunctionCall">
………………………………………….

<Function id="1.3" fname="dbc.changeDataConnection"
param1="%dbName" />

</Line>

Figure 3. Genplatform Instruction: Call Object Method

Expresses a call to the method changeDataConnection on the
object dbc passing the content of the variable dbName which is
evaluated in the context. Subsequently the object named
dbName is called to manage the connection to the database.
The memory manager will keep the references to the live
referenced objects as long they are named in the context. There
will be a need for an operation to free the object by resetting
the name to another object, which will decrease the number of
references to the real object and signals its state as disposable
to the garbage collector.

We note that all of declarations and function calls share the
same function call pattern. Subsequent programming
instructions follow this pattern too: all function calls will
contain the same function-{att=val}* format, which simplifies
the mechanism and familiarized the developer quickly with the
code. We retain here that one tag <function> is sufficient for
both declarations and method call. The reserved keywords/tags
here are tag function, and the attributes of the tag: fname,
name, param1, param2, out. The values assigned to these
values will serve to determine which objects to call, which
methods to evaluate and which controls in a user interface are
affected.

Language Components: First implementation of
GenXML[REF IJCSS] is done using .NET framework. Hence
.NET classes are available through the reflection namespace
and classes are used in XML instructions to be instantiated.
Data structures such as Hash maps, Dictionaries, and Arrays
are used as instances so their methods are also callable through
xml instructions.

Declarations and Objects: In Figure 2, the attribute
fname=”Declare” specifies a declaration operation. All classes
variables may be declared using the generic instruction format.

<Function id="1.2" fname="Declare" name="varname"
type="vartype" />
A new object of the type vartype shall be instantiated, then
added to the application context as referred by the variable
varname.

Operators: Operators are implemented through method call
over an object instance of a .NET class, or a class defined in an
extension library as in the sample script:

<Function id="1.1" fname="Declare" name="p1"
type="System.Int16" param1=”2”/>
<Function id="1.2" fname="p1.Parse" param1=”3” out=”p2”/>
<Function id="1.3" fname="Operators.add" param1=”%p1”
param1=”%p2” out=”p3”/>

Figure 4. GENXML Add Operator

Where Operators is an extended library offering the methods
the functions add, substract, multiply, divide, modulo,
remainder, and, or, xor. This library may be extended with new
operators.

Arrays: Operators are implemented through method call over
an object instance of a .NET class, or a class defined in an
extension library. An array is an object of a predefined
dynamic library that may be either loaded as an extension or
provided by the hosting environment (which is in this case
.NET environment).

In the sample statement:

<Function id="2.3" fname="dbac.getArrayList" out=”arr”/>

getArrayList takes no parameters returns an object of type
ArrayList, referenced in the application context by the name
arr. All other functions may use the arraylist object through a
call

<Function id="1.3" fname="arr.Add" param1="%par1" />

Figure 5. GENXML Arrays

International Journal of Recent Advances in Multidisciplinary Research 4849

We note here that the method getArrayList is a defined
method, local to our platform. However, the returned object is
a .NET framework object, which activates all the calls to its
.NET defined methods such as the method Add.

Conditionals and Loops: The execution of the script is done
using a parsing of the XML document tree, depth-first
navigation. GenXML allows nested blocks in if function tags
like.

<Function Id="3.5" fname="If"
Condition="(%dv_UserRolePasswordValid.Count > 0)">
<Then>
……….
</Then>
<Else>
……….
</Else>
</Function>

Figure 6. GENXML If Block

The condition is here expressed as the count property of a data
view variable. The then block is a starting of a new sequence
of tags that may be including another if block. The syntax of
the If block requires an in-context validation of the block by
the Loader module that will insure the well-formed structure of
the if-Block prior to its submission to the reflector.

Loops are expressed by the tag <Loop> as in the example:

<Function id="5.14" fname="While"
Condition="(%nbColumns > 1)">
<Loop>
<Function id="1.4" fname="par4.setValue"
param1="%grdStudentCourseGrade.Columns.[%nbColumns].
Binding.Path.Path"/>
<Function id="1.5" fname="dbac.getDViewFromProc"
param1="SR_getHeader" param2="%arrEx"
out="dv_lstColHeader" />
<Function Id="1.6" fname="If"
Condition="(%dv_lstColHeader.[0].[defined] > 0)">
<Then>
<Function id="1.7" fname="grdG.Columns.[%nbColumns].
setProperty" param1="Header"
param2="%dv_lstColHeader.[0].[0]" />
<Function id="1.8"
fname="grdG.Columns.[%nbColumns].setProperty"
param1="Visibility" param2="Visible" />
</Then>
<Else>
<Function id="1.9"
fname="grdG.Columns.[%nbColumns].setProperty"
param1="Visibility" param2="Hidden" />
</Else>
</Function>
<Function id="2.0" fname="this.setCalculated"
param1="nbColumns" param2="%nbColumns - 1" />
</Loop>
</Function>

Figure 7. GENXML Loops

While instructions blocks begin with a generic function tag
format, and include a loop tag block that delimits the
boundaries of the while block. In the sample, the while

condition is executed as long the variable nbColumns is greater
than 0. This variable is decreased at each iteration by the
function id = 2.0. Loops and Conditionals take advantage of
the hierarchical nature of XML segments to recursively define
loops in loops, and conditionals in loops, or loops in
conditionals.

Input Output: In general, a process has three streams for data
input, output and errors. GenXML as XML specification
language doesn’t recognize directly any of such. It relies on
variables properties to read and write values. These variables
being defined as application context objects, such as
components in a form, it becomes easy to set their properties
across method calls. A direct consequence of this principle is
the current implementation of GenXML on top of .NET
framework generally and WPF [9] more specifically. The good
news here is that WPF is xml based and used a syntax called
xaml, which specifies the visual tree of any form as xaml
script. GenXML applications start then by considering all the
visual tree components as objects in the global context, which
allows the scripts to act on the components appearance as well
on their contents. The function 1.9 in the figure 7 shows a hide
of a grid column depending on a value read from a database.
Function 1.7 shows the update of a column header to a value
specified in the database, read through a function call.

Implementation: In a first real-time implementation, we have
developed a student management system (SIS) based on
GenXML. The overall effort for development has shown the
following:

 Two developers were needed to implement the code in
a period of six month (development effort)

 The learning curve of the coding practices and style was
reduced to few hours (learning curve)

 Since all the code is similar, developing a new function
using GenXML was reduced to a code duplicate
followed by adjustment. The percentage of the adjusted
code is less than 20 % leading to a cost minimization
(cost reducing)

 The maintenance of the code is simple since the
application is organized in group of GenXML scripts
(modularity).

A quick comparison with the modern methods to evaluate the
cost of development shows that the impact of the chosen
language is important. Function Points (FP) [10] introduced by
Albrecht define an empirical estimated of the needed effort,
where the Lines of code (LOC) measure the quantity of lines
of code needed to implement a given functionality. The
language complexity has the final word on the determination
of a program complexity. The relation LOC/FP [11] depends
greatly on the language complexity where 320 lines of code are
necessary for each function point if the assembly language is
used. This number shuts to 30 if an object oriented
programming language is used. In the case of GenXML, we
noticed an average estimate of 15 Lines of code per function
point, which is dividing the effort of programming by 2.

Conclusion

In this paper we have introduced GenXML and GenPlatform, a
programming language using XML syntax and implementation
that takes the benefits of underlying .NET framework. The
simplicity of the language has been shown through examples

International Journal of Recent Advances in Multidisciplinary Research 4850

citing the components of a simple syntax that reduces the flow
of execution of a program to the interpretation of a uniformly
expressed sequence of xml tags, and the utility of the platform
has been exposed through a first implementation. Commercial
software take benefits of this extensibility and simplicity. Code
is stored in a relational database and loaded on demand. This
feature makes the update of scripts easy and run independent
where developers may update an application code while code
is run. In the current implementation, WPF and .NET are used
to build applications. However the extension of supported
framework will result in a portability of the same code to
different environments such as spring framework [12][13].

Future Work

In the first implementation of GenPlatform, we have opted for
an integration with .NET framework which is tied closely to
windows operating system. Future implementation of this
platform will be based on Java, which will provide Operating
system portability. Reflection in Java will be extensively used.
The storage of the XML scripts actually located in the
databases shall be improved to implement a caching
mechanism allowing to load the graphical interface expressed
in xml faster. In this area we will examine the modern caching
mechanisms to increase the performance of the system. Finally
we will improve the dynamic loading of external libraries to
extend the capabilities of GenXML.

REFERENCES

A Programmatic View and Implementation of XML, G.EL

NEMR, P.Gedeon. International Journal of Computer
Science and Security (IJCSS), Volume-13 : Issue-1 : 2019

A Rule-Based Style and Grammar Checker, Daniel Naber,
Universität Bielefeld. Thesis. 2003.

Assessing programming language impact on development and
maintenance: a study on C and C++. Pamela Bhattacharya
&& Iulian Neamtiu, Proceeding ICSE '11 Proceedings of
the 33rd International Conference on Software Engineering
Pages 171-180.

Compilers: Principles, Techniques, and Tools, Aho, Lam,
Sethi. Addison Wesley 2006, ISBN-13: 978-0321486813

Designing Programming Languages for Reliability. Harry H.
Porter. CS Department, Portland State University, 2001.

Evaluating and Mitigating the Impact of Complexity in
Software Models. Delange, Hudak, Nichols, McHale and
Nam. Technical report CMU/SEI-2015-TR-013. Carnegie
Mellon University, Software Engineering Institute. Dec
2015.

https://docs.spring.io/autorepo/docs/spring/4.3.0.RELEASE/sp
ring-framework-reference/pdf/spring-framework-
reference.pdf. Accessed Dec 2018.

Measuring Application Development Productivity. Albrecht,
A., Proceedings of IBM Application Development
Symposium, October 1979, 83-92.

Meta Programming in .NET. Kevin Hazzard and Jason Bock.
Manning Shelter Island, 2013, 365 p.

Modern PHP: New Features and Good Practices, Lockhart,
Oreilly, 2015. ISBN-13: 978-1491905012

Programming in Scala: A Comprehensive Step-by-Step Guide,
Odersky, Spoon and Venners, 2nd Edition,2011. ISBN-13:
978-0981531649

Robert Harper. Practical Foundations for Programming
Languages. Carnegie Mellon University. 2016 pp 334.

Software Function, source Lines of Code and Development
Effort Prediction: A Software Science Validation. Albrecht
A., Gaffney J., IEEE Transactions on Software Engineering
9(11), November 1983, 639-648.

Spring Framework Reference Documentation. Rod Johnson &
authors. Spring framework official documentation, 2015,
904 p.

WPF4.5 Unleashed. Adam Nathan. Pearson Education. 2014.
847 p.

WWW: o-xml the object oriented programming language.
https://www.o-xml.org. Accessed Dec 2018.

WWW: Programming Language. https://techterms.com/
definition/programming_language. Accessed Dec 2018.

WWW: Reserved Words of Programming languages.
https://halyph.com/blog/2016/11/28/prog-lang-reserved-
words.html. Accessed Dec 2018.

XAML Syntax In Detail, Microsoft documentation.
https://docs.microsoft.com/en-us/dotnet/framework/wpf/
advanced/xaml-syntax-in-detail, 2017.

XAML Syntax In Detail, Microsoft documentation.
https://docs.microsoft.com/en-us/dotnet/framework/wpf/
advanced/xaml-syntax-in-detail, 2017.

International Journal of Recent Advances in Multidisciplinary Research 4851

