

www.ijramr.com

International Journal of Recent Advances in Multidisciplinary Research Vol. 03, Issue 03, pp.1315-1317, March, 2016

RESEARCH ARTICLE

VEHICLE CHASSIS ANALYSIS: LOAD CASES

Aadithya, R. and *Muruganandam, D.

Department of Production Engineering, Sri Sairam Engineering College, Chennai-44, India

ARTICLE INFO

Article History:

Received 20th December, 2015 Received in revised form 25th January, 2016 Accepted 07th February, 2016 Published online 31st March, 2016

Keywords:

ANSYS Longitudinal Beam elements.

INTRODUCTION

After years of steady, predictable model changes, the automobile industry is in the midst of the most intense product changeover in its history. To accomplish the need to design a moderate car, the structural engineer will need to use imaginative concepts (Ashutosh Dubey and Vivek Dwivedi, ?). The demands on the automobile designer increased and changed rapidly, first to meet new safety requirements and later to reduce weight in order to satisfy fuel economy requirements. Until the 1930's every motor vehicle had a structural frame, separate from the car's body. This construction design is known as body-on-frame since then, all passenger cars received unibody construction, meaning their chassis and bodywork have been integrated into one another. The last UK mass-produced car with a separate chassis was the Triumph Herald, which was discontinued in 1971. However all trucks, busses, continue to use a separate frame as their chassis (Starry and Donn, 1992). As a result, some observers argue that first true automobile was gasoline powered. Nicolas-joseph cugnot, a French military engineer who in 1769 built a steam powered tricycle for hauling artillery. Vehicle's single front wheel performed both steering and driving functions, and it could travel 2.25 miles per hour with 4 passengers aboard for about 15 minutes (Beermann, 1989). later the two men, Karl Friedrich Benz and Gottlieb Diamler who had never met previously but filed their patents on the same day- January 29.1886-in two different German cities. Benz's three wheeled vehicle, was first drove in 1885 and while Diamler's motorized carriage was the world's first four-wheeled automobile and featured the high speech-gasoline engine.

*Corresponding author: Muruganandam, D.

Department of Production Engineering, Sri Sairam Engineering College, Chennai-44, India

ABSTRACT

The current work contains the load cases and boundary conditions for the stress analysis of chassis using finite element analysis over ANSYS. Shell elements have been used for the longitudinal members & cross members of the chassis. The advantage of using shell element is that the stress details can be obtained over the subsections of the chassis as well as over the complete section of the chassis. Beam elements have been used to simulate various attachments over the chassis, like fuel tank mountings, engine mountings, etc. Spring elements have been used for suspension and wheel stiffness of the vehicle.

Experiment

A chassis consist of an internal framework that supports a manmade object in its construction and use. An example of chassis is the underpart of a motor vehicle, consisting of frame. In case of vehicles, the term rolling chassis means the frame and with addition of "running gears" like engine, transmission, drive shaft, and suspension. For commercial vehicles, a rolling chassis consists of an assembly of all the essential parts of a truck to be ready for operation on the road (without the body) (Ashutosh Dubey and Vivek Dwivedi, ?). Design of a pleasure car chassis will be different than one for commercial vehicle because of the heavier loads and constant work use (Johanssan and Eslund, 1992). Mathematical modeling was therefore a logical avenue to explore. Most recently, the finite element method, a computer dependent numerical technique, has opened up a new approach to vehicle design.

Load Calculations

Adequate durability under dynamic conditions is a design requirement for the vehicle structures, the static load cases cannot be disregarded. The values for the individual load cases

International Journal of Recent Advances in Multidisciplinary Research

are taken from the expected service conditions of the particular vehicle. The factors usually applied to the static load case, especially for those vehicles with a long overhang containing concentrated loads (e.g., rear engine buses).Such loads result in high bending moments over the rear axle. The various dynamic conditions considered here for the determination of the axle loads are considered below.

Loads on Grades

The influence of the grade on the axle loads is worth considering. On primary and secondary loads, grade angle θ is as high as 6.842 deg. For the front axle, taking moment about front axle wheel at ground

 $M_r \times L = M_r \cos \theta \times L_r \cdot M_r \sin \theta \times H$

The above equation gives the weight on the rear axle on grades, through which increase in weight (ΔM_g) on the rear axle due to grade can be calculated. Similarly the loads shift on negative grade can also be calculated. In physics, when frictional forces are acting on a sloped surface such as a ramp, the angle of the ramp tilts the normal force at an angle. When you work out the frictional forces, you need to take this fact into account. *Normal force*, *N*, is the force that pushes up against an object, perpendicular to the surface the object is resting on. The normal force isn't necessarily equal to the force due to gravity; it's the force perpendicular to the surface an object is sliding on. In other words, the normal force is the force pushing the two surfaces together, and the stronger the normal force, the stronger the force due to friction.

Low speed acceleration

Car under acceleration

Acceleration is typically a derived value, calculated from consecutive speed measurement data. Systems that tap into the vehicle speed sensor can monitor speed at 2-10 Hz, providing high-resolution calculations of acceleration values based upon consecutive speed readings taken faster than once per second.

GPS-based systems record satellite signal-derived speed readings once per second. Because acceleration is calculated, acceleration values can differ depending upon the acceleration calculation method used. Assuming the vehicle is accelerating on the level ground from the low speed, then the inertia force will act against the direction of acceleration, the load on the axles are calculated by taking moments

$$M_{f} \times L = M_{t} \times L_{r} - (a \times M_{t} \times H) / g$$

Through the above equation the change in loads due to acceleration (ΔM_a) on wheels can be calculated.

Braking

Full braking is the greatest load to which a forward securing arrangement is exposed. Recent developments in the field of truck tires, coupled with modern brake systems and asphalt roads, permit braking deceleration values that are perfectly capable of approaching 0.8 g. Other factors, such as the distribution of axle weights, also play a role in this context.

During full braking, the following forces act forwards on the cargo in the coordinate system of the loading area (parallel to the loading area):

- inertial force component from the braking maneuver,
- downhill force (weight component) arising from the geodetic inclination of the loading area (pitching angle and gradient of road),
- inertial force arising from tangential acceleration from superimposed pitching oscillation.
- The normal force acting from the cargo on the loading area is generally reduced by two causes, namely, as a result of the inclination of the loading area, by the
- upwardly directed vertical component of the inertial force,
- reduced normal component of the weight-force.

The vehicle under consideration is the N₂ category vehicle. For the N₂ category of the vehicle, under P-F type of test, mean retardation (D) ≥ 6 m/sec². Due to this retardation the change of the axle loads is,

$$\Delta M_{hr} = (H \times M_{t} \times D) / (L \times g)$$

Steady state cornering

Roll center of a suspension system is that point, in the transverse plane axis about which the sprung mass of that end of vehicle will roll under the influence of centrifugal force. It is sort of geometrical balance point. It is also a point through which the lateral forces transmitted from the tire's contact patches act upon the chassis. Lateral forces act on the at the Roll Center of vehicle during cornering. A line joining the roll centers of the suspensions is roll axis. The lateral separation between the suspensions causes them to develop roll resisting moments proportional to the difference in the roll angle between the body and the axle.

 $K_{ab} = 0.5 \times K_s \times s \text{ Kgf mm/rad}$

Anti-dive and anti-squat geometry

Anti-dive and anti-lift are tricks that can be applied to a truck's front suspension geometry to control brake drive and acceleration lift

- As the wheel moves, the upright tends to move with the wheel. But since the upright is rigidly mounted, it tends to neglect the torque. As a result, when accelerating, there is a forward thrust, on lower A-arm and upper A-arm will be pulled in reverse direction.
- As the IC is in front of COG and slightly above it, the rear and end squat will be reduced and the front end will rise higher due to more weight shifted to rear part.
- Changing the upper control arm offset negates the lifting force created.
- This will result in less rise of the front end and less weight would be transferred to the rear.

Lateral load transfer

- Lateral load transfer is caused by forces very similar to those which cause longitudinal transfer-with the operating axis turned ninety degrees.
- In any cornering situation, centrifugal force, acting through the vehicles., tends to throw the car out at tangent to its intended path.
- This centrifugal force is resisted by lateral forces developed by the tires.
- Hence lateral load transfer is a bad thing. The transfer of load from one tire of a pair to the other reduces total attractive capacity of pair.

Lateral load transfer (lb)= {Lateral acceleration(g)*Weight (lb)*C.G. Height(inch)}/Track Width(inch)

RESULTS AND DISCUSSION

As it is clear that, vehicle load transfer has got an expensive application in design of vehicle. Hence study of Vehicle Load Transfer can help us to achieve optimum configuration of the suspension system, steering system and the Static Load Distribution in our Vehicle. It is necessary to use the detailed model of the structure for analysis of the vehicle chassis. It becomes even more necessary, when the center of gravity of the vehicle is towards left or right of the central plane of the vehicle. Loads for various load cases have been calculated, then checked with the measured loads & then loads for load combination cases have been calculated on all the wheels.

• It is impossible to cover all the conditions for the analysis of the vehicle on road conditions, however the abovementioned boundary conditions can be used as the starting analysis for the stresses in the vehicle.

Nomenclature

REFERENCES

- Ashutosh Dubey and Vivek Dwivedi, Vehicle Chassis Analysis: Load Cases and boundary conditions for stress analysis.
- Starry and Donn, A. Vietnam studies; Department of army, washington, D.C. 1978. Association of Licensed automobile manufacturers (U.S) 1992. Official handbook of automobiles.
- Beermann, H. J. The Analysis of Commercial Vehicle Structures, Verlag TUV Rheinland GmbH Koln-1989.
- Johanssan and S, Eslund, Optimization of Vehicle Dynamics in Truck by use of Full Vehicle FE Models, I. Mech.E.-C466/016/93, pp 181-193,1993
- John Fenton, Handbook of Automotive Body Construction and Design Analysis, Professional Engineering Publishing-1998.
